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Abstract—Recently, Software Defined Network (SDN) 
technology has become widely used to take advantage of its 
features, including capabilities for optimization, flexibility, and 
customization. Many companies and organizations are 
applying this technology to build SDN networks for testbeds or 
production networks to address their requirements for 
optimization and customization. Currently, north bound and 
south bound APIs, which integrate SDN controllers and 
switches, are widely defined and implemented. However, an 
east-west interface standard for the communications among 
several SDN domains does not yet exist.  In this paper, we 
propose such a method using Network Service Interface (NSI) 
to solve the east-west communication problem among SDN 
domains. The proposed method first uses OpenVirtex as the 
hypervisor in each SDN domain. We also extend OpenNSA, an 
open-source implementation of NSI agent, to deal with local 
OpenVirtex networks for communicating with other SDN 
domains. In addition, by using the standard NSI protocol, 
cross-platform interconnections between SDN and legacy 
networks can be achieved. 

Keywords—SDN; NSI; OpenNSA; OpenVirtex; East-West 
Interconnections  

I. INTRODUCTION 

The basic Internet technologies developed over decades 
are becoming more difficult to meet increasingly diverse 
requirements. In general, only vendors can apply new 
functions and protocols into legacy network equipment. 
Therefore, it is hard to implement virtualized network 
functions for cutting-edge technologies such as security, 
cloud computing, and big data. 

Recently, Software Defined Network (SDN) has been 
proposed as a clean-slate approach to provide network 
programmability solutions. The main difference between 
SDN and legacy networks is that the former splits the control 
plane and the data plane in legacy network equipment. The 
control plane can be deployed to a stand-alone controller for 
developing customized network services and applications. 
Taking advantage of programmable open architecture, SDN 
can satisfy various customized requirements, enhance and 
create innovative networking services and applications, 
increase utilization of bandwidth, enhance network 
engineering, enable optimization, and reduce production 
costs [1], etc. 

As more and more SDN domains are deployed, it is very 
difficult to ignore the interconnections between legacy and 
SDN networks. In other words, it is extremely important to 

exchange information between these two different types of 
networks. However, the specification of an east-west 
interface is not defined by Open Networking Foundation 
(ONF) [2] and it is still an open issue at this time. 

In order to resolve this problem, we propose to utilize 
NSI (Network Service Interface) [3] as the east-west 
interface. NSI is a standard protocol defined by Open Grid 
Forum (OGF) that manages and allocates network resources 
among legacy network domains. Users and edge processes 
can request connections using the agent software NSA 
(Network Service Agent).  

In our previous research, we used NSI to implement an 
east-west interface among SDN domains [4], and integrated 
it with our SDN inter-domain topology and flow viewer 
[5][6][7]. However, this approach does not focus on the 
communications among NSI-managed legacy networks and 
SDN networks. Therefore, in this paper, we extend NSI east-
west interface and integrate it with OpenVirtex [8] to enable 
the communications between legacy networks and SDNs. 
We also plan to connect with our collaborative organization, 
the International Center for Advanced Internet Research 
(iCAIR) [9] and implement the system over AutoGOLE 
testbed [10] to demonstrate this interconnection. 

The remainder of this paper is organized as follows. 
Section 2 introduces the research background, including 
OpenNSA and OpenVirtex. The implementation of 
information transformation between NSI and OpenVirtex is 
described in Section 3. Experiments and results are 
demonstrated in Section 4. The conclusions are given in the 
last section. 

II. BACKGROUND KNOWLEDGE 

As the technologies of cloud computing develop and 
proliferate, the demands for network virtualization are 
emerging. Because of the programmability of SDN, the 
dynamic provisioning of virtualized networks can be easily 
achieved. In this paper, OpenVirtex is deployed to provide 
SDN-level virtualization within SDN domains. In order to 
interconnect among heterogeneous network domains, we 
employ NSI for east-west communications. We briefly 
introduce the related technologies as follows. 

A. OpenVirtex 

OpenVirtex (OVX) [11] is a tool for constructing 
virtualized networks in SDN environments. It allows 
multiple tenants to use the same network infrastructure. 



Through address, topology, and control virtualization by 
OpenVirtex, all tenants can define and manage their own 
virtualized network topology. Administration of the 
virtualized networks can be customized using this approach 
and the flows of all tenants can be separated.  

OpenVirtex is installed between physical network 
equipment and network controllers. Using OpenVirtex, each 
tenant has its own controller with a secure channel through 
the OpenFlow protocol. For each tenant, OpenVirtex can be 
viewed as network equipment. In contrast, for physical 
network equipment, OpenVirtex, which is connected via a 
channel through OpenFlow protocol, can be viewed as a 
controller. Figure 1 illustrates the architecture of OpenVirtex. 
The Network Embedder module in OpenVirtex provides the 
API of JSON RPC for receiving requests for constructing 
virtualized networks from tenants. Also, it maintains a 
mapping table from physical to virtualized networks.  

Address virtualization is the key component of 
OpenVirtex. In order to allow all tenants to use IP address 
flexibly, tenants are mapped to virtualized IP addresses 
within OpenVirtex backbone. The virtualized network 
topology can be gathered from LLDP packets of tenants. 
Since modifying IP addresses is not generally supported by 
hardware switches, we modified OpenVirtex to separate 
tenants with vlan IDs [11]. Hence, the modified OpenVirtex 
can be deployed over the physical backbone network.  

B. NSI and OpenNSA 

NSI is a protocol standard for the network service layer 
proposed by Open Grid Forum (OGF) [12]. It is applied for 
resource sharing, topology interchanging, and dynamic 
network service allocation among network domains [13]. In 
general, users deploy an agent called Network Service Agent 
(NSA) to request inter-domain connections. NSA can take 
three different roles according to different operation modes 
described as follows.  

 Ultimate Request Agent (uRA): requesting network 
service 

 Aggregator (AG): intermediate that providing 
network services across multiple domains 

 Ultimate Provider Agent (uPA): providing the 
network service 

Taking the scenario in Figure 2 as an example, when 
users need to construct dedicated links and bandwidth, a 
request is issued by uRA. Next, AG starts to discovert the 
uPAs that satisfy the requirements. If a local uPA cannot 
satisfy the requests, the requests will be forwarded to 
neighbor network domain. This process does not stop until a 
uPA that can satisfy the requirements is found. 

There are various implementations of NSA, such as 
OpenNSA[14], OSCARS [15], G-Lambda [16], AutoBHAN 
[17], etc. In this paper, we choose OpenNSA, an open-source 
implementation of NSI agent developed by NORDUnet. We  

 
Fig. 1. OpenVirtex system architecture [18] 

 

Fig. 2. Scenario of NSA use case [19] 

extend OpenNSA to handle the topology exchange and 
connection request for OpenVirtex-based SDN networks. 

III. DESIGN AND IMPELMENTATION 

In this section, we propose a solution to information 
exchanges between SDN and legacy networks. With our 
implementation, based on OpenVirtex and OpenNSA, 
dynamic inter-domain connections can be provisioned. We 
briefly introduce our design concepts first and then describe 
implementation details. 

A. Design Concepts 

In our previous work, we have implemented a system 
which consists of a modified NSI and SDN controller to 
enable the message exchanging function between SDN 
controllers. However, the connection service is not supported 
for SDN domains. In this paper, we employ OpenVirtex as 
SDN controller to provide virtual networks and we develop 
two new services for OpenNSA as follows. 

 Topology information exchange service, and  

 Connection request service 

The two services are demonstrated in Figure 3(A) and 
(B), respectively. There are four SDN domains A, B, C and 
D, that controlled by Ctrl A, Ctrl B, Ctrl C, and Ctrl D, 
respectively. We also deploy NSA A, NSA B, NSA C, and 
NSA D servers over these domains as NSI agents. Each NSA 
server exchanges messages with its own controller via North 
Bound Interface (NBI). There is another legacy domain E 
controlled by NSA E. We assume that each NSA maintains a 
peer list that contains the information of its neighbor NSAs.  

In Figure 3(A), the process of topology exchange service 
of NSA A is listed as follows. 



Step 1. NSA A asks its controller, Ctrl A, to get the 
topology information of domain A. The other 
NSA servers also do the same thing.  Next, NSA 
A stores this topology information and obtains 
all its peers (B and E) from peer list and put 
them into a temporary visit list. 

Step 2. According to the visit list, NSA A traverses all 
the peers, NSA B and NSA E, to request 
topology information of domains, which are 
controlled by them. It also obtains peer lists of 
NSA B (A, C and D) and E (A) and then put 
them into the visit list.  

Step 3. After NSA A gets all data from NSA B and 
NSA E, the topology information will be stored. 
It will examine the new entries in the visit list (C 
and D) and traverse them in the next step.  

Step 4. NSA A visits NSA C and NSA D to get 
topology information and put their peer list into 
the visit list. Since there are no unvisited entries, 
the process of topology exchange is ended. 

 
Assume there is a connection request from client X in 

domain E to client Y in domain D. The process of 
connection request service is listed as follows in Figure 3(B). 

Step 1. NSA E receives the request and compute the 
path X→E→A→B→D.  

Step 2. NSA E creates and configures a routing path 
within domain E for X. 

Step 3. NSA E sends this connection request to NSA A, 
B, and D concurrently.  

Step 4. NSA A, B and D ask Ctrl A, B, and D 
respectively to create a routing path within their 
own domains. Finally, X is able to send flows to 
Y following this path. 

 
(A) 

 
(B) 

Fig. 3. (A) Topology Information Exchange Service (B) Connection 
Request Service 

 
Fig. 4. System Architecture on OpenNSA 

B. Implementation of topology information exchange 

According to our design concepts, we setup the system 
consisting of OpenNSA and OpenVirtex. For the 
implementation of the topology information exchange, there 
are three key problems to be solved: implementation of NBI, 
the communication mechanism between OpenNSA sites, and 
the API for OpenNSA topology. Since OpenVirtex does not 
provide NBI functions, we implement a RESTFul Server [20] 
to act as the NBI. For the communication mechanism 
between OpenNSA sites, we utilize the original NSI 
handshake mechanism. As to API for the OpenNSA 
topology, we implement an agent on OpenNSA. This agent 
can not only exchange messages among OpenNSA sites, but 
also exchange data with other user applications.  

Figure 4 depicts the system architecture using OpenNSA. 
The agent for OpenNSA consists of a NSA Plugin and 
JAVA component. Since the JAVA component cannot 
communicate with OpenNSA directly, we have to implement 
an NSA plugin as a middleware component. A JAVA 
component can obtain the peer list from the NSA plugin and 
put them into a temporary visit list. Also, the JAVA 
component can invoke the NSA plugin to gather topology 
information and request peer lists from other OpenNSA 
peers. 

The JAVA component has four functions, OpenVirtex 
polling, OpenNSA polling, data store, data receiving and 
transmission. OpenVirtex polling communicates with a 
RESTFul server of OpenVirtex to obtain SDN topology 
periodically; OpenNSA polling notifies NSA Plugin to 
obtain the topology of peers via OpenNSA; the data store 
function stores the visit list and topology information in a 
customized data structure. Finally, the data receiving and 
transmission function performs the data exchange with 
OpenVirtex, OpenNSA or other user applications.  

Figure 5 is the flowchart of the topology information 
exchange. When OpenNSA is initialized, the peer list will be 
sent to JAVA component via NSA Plugin. After that, JAVA 
component will communicate with OpenVirtex and NSA 
Plugin periodically. For the communication with OpenVirtex, 
the JAVA component sends topology information requests to 
NBI of OpenVirtex. OpenVirtex then fetches SDN topology 
information and replies via NBI. For the communication 
with the NSA Plugin, the JAVA component asks the NSA 
plugin to traverse all peers according to visit list to obtain 
their topology and peer lists. 



 
Fig. 5. Flowchart of topology exchange 

When there is a request for topology and peer list from 
peer OpenNSAs, the JAVA component will obtain the local 
topology information. Such information can be gathered 
from NSA Plugin if the domain consists of legacy layer 2 
switches. Otherwise, for SDN domains, topology 
information resides in JAVA component. After that, 
topology information and peer list are sent to the requesting 
OpenNSA as a reply. Finally, the requesting OpenNSA 
passes this information to the JAVA component to handle 
and store. According to the above processes, each OpenNSA 
will be able to calculate the global topology.  

C. Implementation of Connection request function  

OpenNSAs can request connections with each other for 
legacy Layer 2 networks. However, there is no 
communication mechanism for OpenNSA to obtain 
information from OpenVirtex-based SDN networks. Hence, 
we design a translator in OpenVirtex NBI to map commands 
between OpenVirtex and OpenNSA.  

Figure 6 shows the original OpenNSA connection 
request process as follows. 

Step 1. When OpenNSA receives a connection request, 
it first analyzes this request and then starts the 
connection service. 

Step 2. The connection service will invoke a specific 
backend 

Step 3. The specific backend sends the configuration 
command to Layer 2 switches through the SSH 
protocol.  

Step 4~6. The configuration results will be sent back to 
requester. 

 
Fig. 6. Flowchart of original OpenNSA connection request process 

  

 
Fig. 7. Flowchart of the enhanced connection request process 

Since the original OpenNSA backend does not have a 
communication mechanism with OpenVirtex, we implement 
a new backend to communicate with OpenVirtex through 
NBI. Figure 7 shows the processes of our implementation. 
All steps are explained as follows. 

Step 1. When OpenNSA receives a connection request, 
it first analyzes this request and then starts the 
connection service. 

Step 2. The connection service will invoke the 
OpenVirtex backend. 

Step 3. The OpenVirtex backend sends the 
configuration command to OpenNSA NBI.  

Step 4. NBI gets the configuration command, and then 
passes to translator. The translator parses the 
commands and then translates them to 
OpenVirtex commands. 

Step 5. The translator passes the OpenVirtex 
configuration commands to OpenVirtex. 

Step 6. OpenVirtex executes the configuration 
commands. 

Step 7. The configuration results will be sent back to 
requester. 

IV. EXPERIMENTS 

In this section, we use two different environments to test 
the function of connection setup and topology information 
exchange. The testing infrastructure for connection setup is 
shown as Figure 8. In control plane, OpenVirtex controls two 
SDN switches, SDN A and SDN B. Two hosts A and B, with 
static IP addresses of 10.0.0.1 and 10.0.0.2, are connected to 
the 2nd port of SDN A and SDN B, respectively. 

The testing process was designed to make sure that 
10.0.0.1 can ping 10.0.0.2 through two SDN switches 
successfully. The whole testing processes are listed as 
follows and shown in Figure 9.  

Step 1. OpenNSA sends a connection request to 
OpenVirtex. 



Step 2. When OpenVirtex receives the connection 
request from OpenNSA, it will assign flows 
between SDN A and SDN B. A VLAN ID (100) 
is generated for this dedicated connection. 

Step 3. Host A pings Host B successfully as shown in 
Figure 10. 

Next, we test the function of topology information 
exchange. The testing infrastructure is shown in Figure 11. 
There are 3 network domains twaren1.nchc.org (denoted as 
TWAREN1), twaren2.nchc.org (denoted as TWAREN2), 
and twaren3.nchc.org (denoted as TWAREN3). TWAREN2 
connects to TWAREN1 and TWAREN3 in separated links. 
TWAREN1 and TWAREN2 are SDN domains while 
TWAREN3 is a legacy Layer 2 domain.  

After the process of topology information exchange 
finished, we obtain the topology information from 
OpenNSA1, shown in Figure 12(a) and (b). Figure 12(a) 
depicts the abstract information of all domains. There are 3 
network domains, links between domains, and types of all 
network domains. The detailed information within each 
domain can be found in Figure 12(b).  

We also developed a Web-based GUI viewer, which can 
transform text topology information into a graphical view. 
Figure 13 displays the names and types of all network 
domains, including OpenVirtex or Layer 2 switch domains.  

In Figure 13, when users click on the OpenVirtex node, 
the detailed topology graph of the selected node will be 
displayed. As shown in Figure 14, there are 3 switches and 
their links. Each switch is labeled with their data path ID 
(DPID). 

In addition, when users click the Layer 2 switch node, the 
detailed information of the selected Layer 2 switch will be 
displayed, as shown in Figure 15. When users click on a 
number, which is the port id, then its detailed information is 
shown in the right-hand side for network administrators to 
manage. 

 
Fig. 1. Backend communicate with OpenVirtex 

 
Fig. 2. Flows of testing process 

 

Fig. 3. Testing results 

 
Fig. 4. Infrastructure of topology information exchange 

 

(a) Abstract topology data of all domains 

 
(b) Physical topology data 

Fig. 5. Experimental results 

 
Fig. 6. Snapshot of overall abstract infrastructure 



 
Fig. 7. Snapshot of detail information of the OpenVirtex node 

 
Fig. 8. Detailed information of a Layer 2 switch node 

 

Fig. 9. Architecture integrated with iCAIR 

V. CONCLUSIONS 

In this paper, we describe a modified OpenNSA and the 
implementation of an agent to enable OpenNSA to gather the 
topologies of SDN and legacy networks. We can 
dynamically allocate virtual networks across SDN and 
legacy network domains. Users can also view both global 
and local topologies with a Web-based GUI viewer. 

In the future, we will extend the topology to iCAIR in 
order to connect with AutoGOLE, which is a NSI testbed 
with more than 20 international organizations. As shown in 
Figure 16, iCAIR works as an aggregator of AutoGOLE and 
we will setup a peer between NCHC and iCAIR for NSI 
exchanges. This will enhance the connections between SDN 
and legacy networks, and  will promote cooperation among 
international organizations. 
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