
Heterogeneous Interconnection between SDN and Layer2 Networks based on NSI

Ta-Yuan Chou, Wun-Yuan Huang, Hui-Lan Lee, Te-Lung Liu, Joe Mambretti*, Jim Hao Chen*, Fei Yeh*
National Center for High-Performance Computing, NARLabs, Taiwan

*International Center for Advanced Internet Research (iCAIR), Northwestern University, U.S.A
{ 1203053, wunyuan, gracelee, tlliu}@narlabs.org.tw

{j-mambretti, jim-chen, fyeh}@northwestern.edu

Abstract—Recently, Software Defined Network (SDN)
technology has become widely used to take advantage of its
features, including capabilities for optimization, flexibility, and
customization. Many companies and organizations are
applying this technology to build SDN networks for testbeds or
production networks to address their requirements for
optimization and customization. Currently, north bound and
south bound APIs, which integrate SDN controllers and
switches, are widely defined and implemented. However, an
east-west interface standard for the communications among
several SDN domains does not yet exist. In this paper, we
propose such a method using Network Service Interface (NSI)
to solve the east-west communication problem among SDN
domains. The proposed method first uses OpenVirtex as the
hypervisor in each SDN domain. We also extend OpenNSA, an
open-source implementation of NSI agent, to deal with local
OpenVirtex networks for communicating with other SDN
domains. In addition, by using the standard NSI protocol,
cross-platform interconnections between SDN and legacy
networks can be achieved.

Keywords—SDN; NSI; OpenNSA; OpenVirtex; East-West
Interconnections

I. INTRODUCTION

The basic Internet technologies developed over decades
are becoming more difficult to meet increasingly diverse
requirements. In general, only vendors can apply new
functions and protocols into legacy network equipment.
Therefore, it is hard to implement virtualized network
functions for cutting-edge technologies such as security,
cloud computing, and big data.

Recently, Software Defined Network (SDN) has been
proposed as a clean-slate approach to provide network
programmability solutions. The main difference between
SDN and legacy networks is that the former splits the control
plane and the data plane in legacy network equipment. The
control plane can be deployed to a stand-alone controller for
developing customized network services and applications.
Taking advantage of programmable open architecture, SDN
can satisfy various customized requirements, enhance and
create innovative networking services and applications,
increase utilization of bandwidth, enhance network
engineering, enable optimization, and reduce production
costs [1], etc.

As more and more SDN domains are deployed, it is very
difficult to ignore the interconnections between legacy and
SDN networks. In other words, it is extremely important to

exchange information between these two different types of
networks. However, the specification of an east-west
interface is not defined by Open Networking Foundation
(ONF) [2] and it is still an open issue at this time.

In order to resolve this problem, we propose to utilize
NSI (Network Service Interface) [3] as the east-west
interface. NSI is a standard protocol defined by Open Grid
Forum (OGF) that manages and allocates network resources
among legacy network domains. Users and edge processes
can request connections using the agent software NSA
(Network Service Agent).

In our previous research, we used NSI to implement an
east-west interface among SDN domains [4], and integrated
it with our SDN inter-domain topology and flow viewer
[5][6][7]. However, this approach does not focus on the
communications among NSI-managed legacy networks and
SDN networks. Therefore, in this paper, we extend NSI east-
west interface and integrate it with OpenVirtex [8] to enable
the communications between legacy networks and SDNs.
We also plan to connect with our collaborative organization,
the International Center for Advanced Internet Research
(iCAIR) [9] and implement the system over AutoGOLE
testbed [10] to demonstrate this interconnection.

The remainder of this paper is organized as follows.
Section 2 introduces the research background, including
OpenNSA and OpenVirtex. The implementation of
information transformation between NSI and OpenVirtex is
described in Section 3. Experiments and results are
demonstrated in Section 4. The conclusions are given in the
last section.

II. BACKGROUND KNOWLEDGE

As the technologies of cloud computing develop and
proliferate, the demands for network virtualization are
emerging. Because of the programmability of SDN, the
dynamic provisioning of virtualized networks can be easily
achieved. In this paper, OpenVirtex is deployed to provide
SDN-level virtualization within SDN domains. In order to
interconnect among heterogeneous network domains, we
employ NSI for east-west communications. We briefly
introduce the related technologies as follows.

A. OpenVirtex

OpenVirtex (OVX) [11] is a tool for constructing
virtualized networks in SDN environments. It allows
multiple tenants to use the same network infrastructure.

Through address, topology, and control virtualization by
OpenVirtex, all tenants can define and manage their own
virtualized network topology. Administration of the
virtualized networks can be customized using this approach
and the flows of all tenants can be separated.

OpenVirtex is installed between physical network
equipment and network controllers. Using OpenVirtex, each
tenant has its own controller with a secure channel through
the OpenFlow protocol. For each tenant, OpenVirtex can be
viewed as network equipment. In contrast, for physical
network equipment, OpenVirtex, which is connected via a
channel through OpenFlow protocol, can be viewed as a
controller. Figure 1 illustrates the architecture of OpenVirtex.
The Network Embedder module in OpenVirtex provides the
API of JSON RPC for receiving requests for constructing
virtualized networks from tenants. Also, it maintains a
mapping table from physical to virtualized networks.

Address virtualization is the key component of
OpenVirtex. In order to allow all tenants to use IP address
flexibly, tenants are mapped to virtualized IP addresses
within OpenVirtex backbone. The virtualized network
topology can be gathered from LLDP packets of tenants.
Since modifying IP addresses is not generally supported by
hardware switches, we modified OpenVirtex to separate
tenants with vlan IDs [11]. Hence, the modified OpenVirtex
can be deployed over the physical backbone network.

B. NSI and OpenNSA

NSI is a protocol standard for the network service layer
proposed by Open Grid Forum (OGF) [12]. It is applied for
resource sharing, topology interchanging, and dynamic
network service allocation among network domains [13]. In
general, users deploy an agent called Network Service Agent
(NSA) to request inter-domain connections. NSA can take
three different roles according to different operation modes
described as follows.

 Ultimate Request Agent (uRA): requesting network
service

 Aggregator (AG): intermediate that providing
network services across multiple domains

 Ultimate Provider Agent (uPA): providing the
network service

Taking the scenario in Figure 2 as an example, when
users need to construct dedicated links and bandwidth, a
request is issued by uRA. Next, AG starts to discovert the
uPAs that satisfy the requirements. If a local uPA cannot
satisfy the requests, the requests will be forwarded to
neighbor network domain. This process does not stop until a
uPA that can satisfy the requirements is found.

There are various implementations of NSA, such as
OpenNSA[14], OSCARS [15], G-Lambda [16], AutoBHAN
[17], etc. In this paper, we choose OpenNSA, an open-source
implementation of NSI agent developed by NORDUnet. We

Fig. 1. OpenVirtex system architecture [18]

Fig. 2. Scenario of NSA use case [19]

extend OpenNSA to handle the topology exchange and
connection request for OpenVirtex-based SDN networks.

III. DESIGN AND IMPELMENTATION

In this section, we propose a solution to information
exchanges between SDN and legacy networks. With our
implementation, based on OpenVirtex and OpenNSA,
dynamic inter-domain connections can be provisioned. We
briefly introduce our design concepts first and then describe
implementation details.

A. Design Concepts

In our previous work, we have implemented a system
which consists of a modified NSI and SDN controller to
enable the message exchanging function between SDN
controllers. However, the connection service is not supported
for SDN domains. In this paper, we employ OpenVirtex as
SDN controller to provide virtual networks and we develop
two new services for OpenNSA as follows.

 Topology information exchange service, and

 Connection request service

The two services are demonstrated in Figure 3(A) and
(B), respectively. There are four SDN domains A, B, C and
D, that controlled by Ctrl A, Ctrl B, Ctrl C, and Ctrl D,
respectively. We also deploy NSA A, NSA B, NSA C, and
NSA D servers over these domains as NSI agents. Each NSA
server exchanges messages with its own controller via North
Bound Interface (NBI). There is another legacy domain E
controlled by NSA E. We assume that each NSA maintains a
peer list that contains the information of its neighbor NSAs.

In Figure 3(A), the process of topology exchange service
of NSA A is listed as follows.

Step 1. NSA A asks its controller, Ctrl A, to get the
topology information of domain A. The other
NSA servers also do the same thing. Next, NSA
A stores this topology information and obtains
all its peers (B and E) from peer list and put
them into a temporary visit list.

Step 2. According to the visit list, NSA A traverses all
the peers, NSA B and NSA E, to request
topology information of domains, which are
controlled by them. It also obtains peer lists of
NSA B (A, C and D) and E (A) and then put
them into the visit list.

Step 3. After NSA A gets all data from NSA B and
NSA E, the topology information will be stored.
It will examine the new entries in the visit list (C
and D) and traverse them in the next step.

Step 4. NSA A visits NSA C and NSA D to get
topology information and put their peer list into
the visit list. Since there are no unvisited entries,
the process of topology exchange is ended.

Assume there is a connection request from client X in

domain E to client Y in domain D. The process of
connection request service is listed as follows in Figure 3(B).

Step 1. NSA E receives the request and compute the
path X→E→A→B→D.

Step 2. NSA E creates and configures a routing path
within domain E for X.

Step 3. NSA E sends this connection request to NSA A,
B, and D concurrently.

Step 4. NSA A, B and D ask Ctrl A, B, and D
respectively to create a routing path within their
own domains. Finally, X is able to send flows to
Y following this path.

(A)

(B)

Fig. 3. (A) Topology Information Exchange Service (B) Connection
Request Service

Fig. 4. System Architecture on OpenNSA

B. Implementation of topology information exchange

According to our design concepts, we setup the system
consisting of OpenNSA and OpenVirtex. For the
implementation of the topology information exchange, there
are three key problems to be solved: implementation of NBI,
the communication mechanism between OpenNSA sites, and
the API for OpenNSA topology. Since OpenVirtex does not
provide NBI functions, we implement a RESTFul Server [20]
to act as the NBI. For the communication mechanism
between OpenNSA sites, we utilize the original NSI
handshake mechanism. As to API for the OpenNSA
topology, we implement an agent on OpenNSA. This agent
can not only exchange messages among OpenNSA sites, but
also exchange data with other user applications.

Figure 4 depicts the system architecture using OpenNSA.
The agent for OpenNSA consists of a NSA Plugin and
JAVA component. Since the JAVA component cannot
communicate with OpenNSA directly, we have to implement
an NSA plugin as a middleware component. A JAVA
component can obtain the peer list from the NSA plugin and
put them into a temporary visit list. Also, the JAVA
component can invoke the NSA plugin to gather topology
information and request peer lists from other OpenNSA
peers.

The JAVA component has four functions, OpenVirtex
polling, OpenNSA polling, data store, data receiving and
transmission. OpenVirtex polling communicates with a
RESTFul server of OpenVirtex to obtain SDN topology
periodically; OpenNSA polling notifies NSA Plugin to
obtain the topology of peers via OpenNSA; the data store
function stores the visit list and topology information in a
customized data structure. Finally, the data receiving and
transmission function performs the data exchange with
OpenVirtex, OpenNSA or other user applications.

Figure 5 is the flowchart of the topology information
exchange. When OpenNSA is initialized, the peer list will be
sent to JAVA component via NSA Plugin. After that, JAVA
component will communicate with OpenVirtex and NSA
Plugin periodically. For the communication with OpenVirtex,
the JAVA component sends topology information requests to
NBI of OpenVirtex. OpenVirtex then fetches SDN topology
information and replies via NBI. For the communication
with the NSA Plugin, the JAVA component asks the NSA
plugin to traverse all peers according to visit list to obtain
their topology and peer lists.

Fig. 5. Flowchart of topology exchange

When there is a request for topology and peer list from
peer OpenNSAs, the JAVA component will obtain the local
topology information. Such information can be gathered
from NSA Plugin if the domain consists of legacy layer 2
switches. Otherwise, for SDN domains, topology
information resides in JAVA component. After that,
topology information and peer list are sent to the requesting
OpenNSA as a reply. Finally, the requesting OpenNSA
passes this information to the JAVA component to handle
and store. According to the above processes, each OpenNSA
will be able to calculate the global topology.

C. Implementation of Connection request function

OpenNSAs can request connections with each other for
legacy Layer 2 networks. However, there is no
communication mechanism for OpenNSA to obtain
information from OpenVirtex-based SDN networks. Hence,
we design a translator in OpenVirtex NBI to map commands
between OpenVirtex and OpenNSA.

Figure 6 shows the original OpenNSA connection
request process as follows.

Step 1. When OpenNSA receives a connection request,
it first analyzes this request and then starts the
connection service.

Step 2. The connection service will invoke a specific
backend

Step 3. The specific backend sends the configuration
command to Layer 2 switches through the SSH
protocol.

Step 4~6. The configuration results will be sent back to
requester.

Fig. 6. Flowchart of original OpenNSA connection request process

Fig. 7. Flowchart of the enhanced connection request process

Since the original OpenNSA backend does not have a
communication mechanism with OpenVirtex, we implement
a new backend to communicate with OpenVirtex through
NBI. Figure 7 shows the processes of our implementation.
All steps are explained as follows.

Step 1. When OpenNSA receives a connection request,
it first analyzes this request and then starts the
connection service.

Step 2. The connection service will invoke the
OpenVirtex backend.

Step 3. The OpenVirtex backend sends the
configuration command to OpenNSA NBI.

Step 4. NBI gets the configuration command, and then
passes to translator. The translator parses the
commands and then translates them to
OpenVirtex commands.

Step 5. The translator passes the OpenVirtex
configuration commands to OpenVirtex.

Step 6. OpenVirtex executes the configuration
commands.

Step 7. The configuration results will be sent back to
requester.

IV. EXPERIMENTS

In this section, we use two different environments to test
the function of connection setup and topology information
exchange. The testing infrastructure for connection setup is
shown as Figure 8. In control plane, OpenVirtex controls two
SDN switches, SDN A and SDN B. Two hosts A and B, with
static IP addresses of 10.0.0.1 and 10.0.0.2, are connected to
the 2nd port of SDN A and SDN B, respectively.

The testing process was designed to make sure that
10.0.0.1 can ping 10.0.0.2 through two SDN switches
successfully. The whole testing processes are listed as
follows and shown in Figure 9.

Step 1. OpenNSA sends a connection request to
OpenVirtex.

Step 2. When OpenVirtex receives the connection
request from OpenNSA, it will assign flows
between SDN A and SDN B. A VLAN ID (100)
is generated for this dedicated connection.

Step 3. Host A pings Host B successfully as shown in
Figure 10.

Next, we test the function of topology information
exchange. The testing infrastructure is shown in Figure 11.
There are 3 network domains twaren1.nchc.org (denoted as
TWAREN1), twaren2.nchc.org (denoted as TWAREN2),
and twaren3.nchc.org (denoted as TWAREN3). TWAREN2
connects to TWAREN1 and TWAREN3 in separated links.
TWAREN1 and TWAREN2 are SDN domains while
TWAREN3 is a legacy Layer 2 domain.

After the process of topology information exchange
finished, we obtain the topology information from
OpenNSA1, shown in Figure 12(a) and (b). Figure 12(a)
depicts the abstract information of all domains. There are 3
network domains, links between domains, and types of all
network domains. The detailed information within each
domain can be found in Figure 12(b).

We also developed a Web-based GUI viewer, which can
transform text topology information into a graphical view.
Figure 13 displays the names and types of all network
domains, including OpenVirtex or Layer 2 switch domains.

In Figure 13, when users click on the OpenVirtex node,
the detailed topology graph of the selected node will be
displayed. As shown in Figure 14, there are 3 switches and
their links. Each switch is labeled with their data path ID
(DPID).

In addition, when users click the Layer 2 switch node, the
detailed information of the selected Layer 2 switch will be
displayed, as shown in Figure 15. When users click on a
number, which is the port id, then its detailed information is
shown in the right-hand side for network administrators to
manage.

Fig. 1. Backend communicate with OpenVirtex

Fig. 2. Flows of testing process

Fig. 3. Testing results

Fig. 4. Infrastructure of topology information exchange

(a) Abstract topology data of all domains

(b) Physical topology data

Fig. 5. Experimental results

Fig. 6. Snapshot of overall abstract infrastructure

Fig. 7. Snapshot of detail information of the OpenVirtex node

Fig. 8. Detailed information of a Layer 2 switch node

Fig. 9. Architecture integrated with iCAIR

V. CONCLUSIONS

In this paper, we describe a modified OpenNSA and the
implementation of an agent to enable OpenNSA to gather the
topologies of SDN and legacy networks. We can
dynamically allocate virtual networks across SDN and
legacy network domains. Users can also view both global
and local topologies with a Web-based GUI viewer.

In the future, we will extend the topology to iCAIR in
order to connect with AutoGOLE, which is a NSI testbed
with more than 20 international organizations. As shown in
Figure 16, iCAIR works as an aggregator of AutoGOLE and
we will setup a peer between NCHC and iCAIR for NSI
exchanges. This will enhance the connections between SDN
and legacy networks, and will promote cooperation among
international organizations.

REFERENCES

[1] S. Ortiz, “Software-defined Networking: On the Verge of a
Breakthrough?” Computer, vol. 46, no. 7, pp. 10-12, Jul. 2013.

[2] Open Networking Fundation, https://www.opennetworking.org/

[3] Network Service Interface (NSI),

https://redmine.ogf.org/projects/nsi-wg

[4] W. Y. Huang, H. L. Lee, and T. L. Liu, “Application and
Implementation of NSI for Information Transportation on SDN
Networks,” Proceedings of TANET 2015－ Taiwan Academic
Network Conference, Nantou, Taiwan R.O.C., Oct. 2015.

[5] W. Y. Huang, J. W. Hu, S. C. Lin, T. L Liu, P. W Tsai, C. S. Yang, F.
I. Yeh, J. H. Chen, and J. Mambretti, “Design and Implementation of
an Automatic Network Topology Discovery System for the Future
Internet across Different Domains,” Proceedings of the 26th
International Conference on Advanced Information Networking and
Applications Workshops (WAINA), pp. 903-908, Mar. 2012.

[6] W. Y. Huang, J. W. Hu, T. Y. Chou, and T. L. Liu, “Design and
Implementation of Real-Time Flow Viewer across Different
Domains,” Proceedings of the 27th International Conference on
Advanced Information Networking and Applications Workshops
(WAINA) , pp. 619-624, Mar. 2013.

[7] W. Y. Huang, T. Y. Chou, J. W. Hu, T. L. Liu, “RESTFul API and
HTML5-based interdomain end-to end topology and flow viewing
system in SDN networks” Proceedings of TANET 2014－Taiwan
Academic Network Conference, Kaohsiung, Taiwan R.O.C., Oct.
2014.

[8] A. Al-Shabibi, M. D. Leenheer, M. Gerola, A. Koshibe, E. Salvadori,
G. Parulkar, and B. Snow. OpenVirteX: Make your virtual sdns
programmable. In Proceedings of ACM SIGCOMM Workshop on
Hot Topics in Software De ned Networking (HotSDN 2014), pp. 25-
30, 2014.

[9] International Center for Advanced Internet Research,
http://www.icair.org/

[10] AutoGOLE, http://dashboard.lab.uvalight.net/overview

[11] A. Al-Shabibi, M. D. Leenheer, M. Gerola, A. Koshibe, E. Salvadori,
G. Parulkar, and B. Snow. OpenVirteX: Make your virtual sdns
programmable. In Proceedings of ACM SIGCOMM Workshop on
Hot Topics in Software De ned Networking (HotSDN 2014), pp. 25-
30, 2014.

[12] Open Grid Forum (OGF), http://www.ogf.org/

[13] H. L. Lee, Jim Hao Chen, Fei I. Yeh, M. Chen, T. L. Liu, “Layer2
SDX: SDN exchanging center,”Proceedings of TANET 2015－
Taiwan Academic Network Conference, Nantou, Taiwan R.O.C., Oct.
2015.

[14] OpenNSA, https://github.com/NORDUnet/opennsa/

[15] OSCARS, https://www.es.net/engineering-services/oscars/

[16] A. Takefusa, et. al, “G-lambda: coordination of a grid scheduler and
lambda path service over GMPLS Source,” Future Generation
Computer Systems ,Vol.22 , Issue 8, pp. 868 – 875, October 2006.

[17] M. Büchli, at al., “Deliverable DJ.3.3.1:GÉANT2 Bandwidth on
Demand Framework and General Architecture”, GÉANT, 2005.

[18] J. MacAuley et. al, “Network Service Interface Signaling and Path
Finding”, GWD-I NSI-WG, December 2014.

[19] J. W. Hu, H. M. Tseng, and T. L. Liu, “Implementation of Dynamic
Virtualized Network Provisioning using OpenFlow,” Proceedings of
TANET 2015－Taiwan Academic Network Conference, Nantou,
Taiwan R.O.C., Oct. 2015.

[20] REST API, http://www.restapitutorial.com

